Summer Institute in Computational Social Science Partner Site

July 28 - August 09, 2019 | University of Bamberg

Partner location for SICSS organised at Princeton University

From the evening of Sunday, July 28 to Friday, August 09, 2019, the University of Bamberg will host a partner event for the Summer Institute in Computational Social Science. The purpose of SICSS Bamberg is to bring together interested Master students, PhD students, postdoctoral students and faculty in Germany. The Summer Institute is for both social scientists (broadly conceived) and data scientists (broadly conceived).

The instructional program will involve lectures and group problem sets in the first week and participant-led research projects in the second week. Participants will be able to work in teams to learn how to implement the material from the lectures. Covered topics include ethics, web scraping and collecting digital trace data, automated text analysis, network analysis, digital field experiments, and surveys in the digital age. There will be ample opportunities for students to discuss their ideas and research with the organizers, other participants, and visiting speakers. One goal of this partner location is to build and expand the network of computational social scientists in Germany.

We are inviting applications from Master students, PhD students, postdoctoral researchers, and untenured faculty within 5 years of their PhD. Participants are expected to fully attend and participate in the entire two-week program. Participants with less experience with social science research will be expected to complete additional readings in advance of the Institute, and participants with less coding experience will be expected to complete a set of online learning modules on the R programming language. There is no cost for participating in the Summer Institute. For a limited number of participants, we will be able to cover housing and meal expenses up to a set cap.

Application materials were due Monday, February 25, 2019. We are no longer accepting applications.


We thank the Bamberg Graduate School of Social Sciences (BAGSS) for the generous support of this SICSS partner event.

BAGSS logo

We are also grateful for financial support from the Russell Sage Foundation and the Alfred P. Sloan Foundation.


All events will be held at:

University of Bamberg Feldkirchenstr. 21
96052 Bamberg

Organizers & Faculty

Image of Julian Hohner

Julian Hohner

Julian Hohner is a PhD candidate in Political Science at Bamberg University. He also works in the Management of the Bamberg Graduate School of Social Sciences and is particular interested in machine learning, quantitative text analysis, inferential statistics as well as populist, party and governmental behaviour studies. Moreover, Julian is participating as Teaching Assistant of the ECPR Winter/Summer Schools on a regular basis.

Image of Thomas Saalfeld

Thomas Saalfeld

Thomas Saalfeld is Professor of Political Science at the University of Bamberg and Director of the Bamberg Graduate School of Social Sciences. Prior to joining Bamberg in 2009, he held research and teaching positions at the Universities of the German Federal Armed Forces Munich, Hull, Dresden, Kent and Bamberg. He was Member of the Council of the German Political Science Association from 2015 to 2016 and joined the Executive Committee of the European Consortium for Political Research (ECPR) in 2018. Since 2015 he has been the local organizer of the ECPR Winter School in Methods and Techniques. He has a particular interest in text-as-data applied to legislative studies.

Carsten Schwemmer

Carsten Schwemmer is currently finishing a PhD in Sociology at Bamberg University, Germany. His research focuses on computational methods for the study of ethnic minorities and social media communication. Carsten is particularly interested in natural language processing, data mining and software development. He gave courses on computational social science at University of Bamberg, University of Constance and Humboldt University of Berlin.

Guest Speakers & Lecturers

Andreas Jungherr

Andreas Jungherr is a Juniorprofessor (Assistant Professor) for Social Science Data Collection and Analysis at the University of Konstanz. He studies the impact of digital media on politics and society. He has worked on the uses of digital media and technology by publics, political actors, and organizations in international comparison. He also addresses challenges for scientific research in reaction to digital change in order to realize opportunities emerging from new data sources and analytical approaches. In this, he has focused on harnessing the potential of digital methods and computational social science while addressing methodological challenges in its integration into the social sciences. Depending on the object under study, he also uses traditional quantitative and qualitative empirical approaches. Currently, he is lead investigator of ‘Communicative Power in Hybrid Media Systems’, a project financed by the Volkswagen Stiftung (2017-2020). The interdisciplinary project, featuring computer and information scientists, focuses on the interconnection between political coverage in legacy, online media, and political talk on online platforms in Germany, UK, USA, and South Korea.

Fariba Karimi

Fariba Karimi is a researcher at the Department of Computational Social Science at GESIS – Leibniz Institute for the Social Sciences. She received her PhD in Physics with specialization in network science. Her current research focuses on computational approaches for addressing societal challenges such as gender inequality, bias in algorithms and sampling hard-to-reach groups and minorities. Her main expertise is analyzing large-scale socio-technical systems using network theory and data analysis.

Image of Oliver Posegga

Oliver Posegga

Oliver Posegga is an Assistant Professor at the Department of Information Systems and Social Networks at the University of Bamberg, an affiliate of the Center for Collective Intelligence at the MIT Sloan School of Management, and a principal investigator of the project ‘Communicative Power in Hybrid Media Systems’, funded by the Volkswagen Foundation. His research focuses on understanding the collective dynamics of digitally enabled networks, such as collective behavior and intelligence in organizational and societal settings, and touches a variety of topics, such as the dynamics of social networks, crisis management, crowdsourcing, data- and information quality, and discursive power in contemporary media systems.

Teaching Assistants

To be announced.


We have arranged two types of training prior to the event this summer. Some students have more sophisticated coding skills but little exposure to social science; other students have significant exposure to social science but lack coding skills.


The majority of the coding work presented at the 2019 SICSS Bamberg will employ R. However, you are welcome to employ a language of your choice, such as Python, or other languages that are commonly used by computational social scientists. If you would like to work in R, we recommend that you complete the following courses within DataCamp, a website with courses on many topics related to data science. Obviously, you only need to complete the classes with material that you would like to learn.

We thank DataCamp for making these materials available to admitted participants though their DataCamp for the Classroom program.

Reading List

The Summer Institute in Bamberg will bring together people from many fields, and therefore we think that asking you to do some reading before you arrive will help us use our time together more effectively. First, we ask you to read Matthew Salganik’s book, Bit by Bit: Social Research in the Digital Age (Read online or purchase from Amazon, Barnes & Noble, IndieBound, or Princeton University Press), which is a broad introduction to computational social science. Parts of this book will be review for most of you, but if we all read this book ahead of time, then we can use our time together for more advanced topics.

Also, for students with little or no exposure to sociology, economics, or political science, we have assembled a collection of exemplary papers. Neither your work nor the work we develop together at the institute need map neatly onto these categories, but if those with less exposure to social science read these, we will increase the chances of interdisciplinary cross-pollination, which we view as critical to the future of computational social science.

Future of Work

Behavioral Economics

Race, Ethnicity, and Immigration

Social Inequality

Political Science

Schedule and materials

Sunday July 28, 2019 - To be announced.

  • The schedule will be posted in the coming weeks.